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An experimental method is described which allows the shear modulus and Poisson's ratio of 
a polymer material to be determined as functions of temperature. Using commercial thermal 
mechanical analysis equipment, measurements are required of the thermal expansion coefficients 
of both unconstrained and constrained specimens, and of the Young's modulus. The constraint on 
a small disc-shaped polymer specimen is applied by a copper annulus. The basis of the method is 
that the apparent thermal expansion of the constrained specimen depends on the Poisson effect, 
and an analysis is given which enbles the Poisson's ratio to be determined. Some illustrative 
results are presented for a silicon rubber. 

1. Introduct ion 
The thermal expansion and Young's modulus of 
a polymer material can conveniently be measured 
over a range of temperatures using commercial ther- 
mal mechanical analysis (TMA) equipment. However, 
it is far more difficult to determine with much accu- 
racy the variation of the shear modulus with tempera- 
ture, and a simple method is described here for doing 
so which utilizes the results of conventional TMA 
equipment. The dependence of the Poisson's ratio of 
the material on temperature is obtained in this 
method. 

The origins of the work reported here lay in a need 
to measure the thermal expansion coefficient and 
Young's modulus of elastomer materials to be used as 
tools for the fabrication of carbon fibre reinforced 
plastic components, either in the form of pressure bags 
[1] or as thermal expansion moulds [2]. In the latter 
application, the expansion of the mould is constrained 
by a n  external metal box, and it was therefore of 
interest to determine the effective thermal expansion 
coefficient of the material when it was constrained in 
two dimensions. These measurements were made with 
a Mettler TMA unit and, as shown in detail below, 
a knowledge of the linear thermal expansion coeffi- 
cient of the constrained material allows the Poisson's 
ratio of the material to be determined. A further 
measurement of the Young's modulus allows the shear 
modulus to be obtained using a standard relationship 
between the elastic constants of linearly elastic 
materials. 

2. Thermal  expansion under constra int  
Commercial thermal mechanical analysis equipment 
typically uses specimens of polymers which are disc- 

shaped, with a diameter of several millimetres and 
with a thickness of a few millimetres. Measurement of 
the changes in thickness of the specimen with increas- 
ing temperature enables the linear coefficient of ther- 
mal expansion, ~, to be determined. A convenient 
method of constraining the material in the plane of the 
disc is to surround it by a ring of a material with much 
lower thermal expansion, for example a section cut 
from a metal tube of suitable diameter, as illustrated in 
Fig. 1. Since reaction stresses are exerted on the cir- 
cumference of the specimen as the temperature is 
raised, an extra elongation of the specimen perpen- 
dicular to the disc will be produced due to the Poisson 
effect. If it is assumed that the annular thickness of the 
constraining ring is small, and that the polymer is 
isotropic and behaves elastically, the effects of the 
constraint can readily be analysed. 

It is convenient to use cylindrical co-ordinates, as 
illustrated in Fig. 1. In the unconstrained case the 
thermal strain, ez, in a direction perpendicular to the 
disc, resulting from a temperature rise, AT, is 

~= = ~A~r  (1) 

This is the quantity measured. 
In the constrained case, the radial expansion of the 

polymer is restricted by the surrounding sleeve. The 
strains produced are partly due to thermal expansion 
and partly due to the reaction stress, components ~r, 
c~_ and G=. Denoting Poisson's ratio by v and Young's 

0 . , 
modulus by E, and assuming that Hooke s law applies, 
then [-3] 

er - 0~AT = [cyr - v(~0 + cyz)]/E 

~o - sAT = [-~o - v(cy~ + cYr)]/E (2) 

e= - 0 ~ A T  = ] -~z  - v (cyr  + c % ) ] / E  
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Figure 1 Elastomer disc specimen constrained by a copper ring. 
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Because the specimen is unconstrained in the z-direc- 
tion, the situation is one of plane stress, such that 

cy: = 0 (3) 

It will be assumed or and cy0 are independent of z, and 
it can then be shown [3] that for a uniform tempera- 
ture distribution 

cyr = o0 (4) 

The radial strain of the specimen on its circumference 
is determined by the radial expansion of the restrain- 
ing ring, 

s~ = ~zoAT (5) 

where ~o is the linear thermal expansion coefficient of 
the ring. From the first of the Equations 2, noting 
Equations 3 and 4, it follows that the stress exerted on 
the disc has components 

(So - ~ ) A T E  
(6) o ~ = o 0 -  ( l - v )  

Substitution into the third of the Equations 2, again 
noting Equation 3, yields for the strain in the 
z-direction 

= r l  + Vl~AT 2v 
s~ L1 - v j  (1 - v) ~oa2" (7) 

Experimental measurements of the strain are conven- 
iently expressed in terms of an effective constrained 
linear thermal expansion coefficient, r say, defined by 

s~ = ~cAT (8) 

Comparison with Equation 7 indicates that 

= [ 1  + v l c  ~ 2v 
~ L~-vJ (1 - v) =o (9) 

Measurements of ~(T) and ~c(T) as functions of tem- 
perature enable Poisson's ratio v(T) to be determined 
as a function of temperature, provided that the expan- 
sion property of the ring material, i.e. c%(T), is known. 
Rearranging Equation 9, Poisson's ratio is given by 

(~o - ~) 
v = (10) 

(~c + ~ - 2r 

The determination of the shear modulus, G, as a func- 
tion of temperature requires a knowledge of the 
Young's modulus E(T) .  The latter may be obtained 

from separate measurements on an unconstrained spe- 
cimen using commercial TMA equipment. Assuming 
that the polymer has linearly elastic properties, both 
the shear modulus and the bulk modulus, K, can be 
evaluated using standard relationships [4] between 
the elastic constants 

G = � 8 9  + v) (11) 

K = 1 E / ( I  - 2v) (12) 

3. Results for  a si l icon elastorner  
As an illustrative example of the use of the above 
methods, some experiments were made on specimens 
of a silicon RTV elastomer. Measurements of the 
linear expansion coefficients under unconstrained and 
constrained conditions, and of the Young's modulus, 
were made using a Mettler TA3000 thermomechanical 
analyser controlled by a TM4000 microprocessor. 
Disc-shaped specimens of 6 mm diameter were cut 
from sheets of the polymer approximately 1.5 mm 
thick. The temperature range used was 25-175 ~ and 
the heating rate was 2 ~ rain-1. For  the determina- 
tion of the thermal expansion coefficients, a static load 
of 0.1 N was applied to the specimen, and for measure- 
ments of the Young,s modulus an oscillatory force of 
amplitude 0.05N was superimposed on the static 
force. The constrained condition was achieved by en- 
closing a polymer specimen with a copper ring of 
depth 1.5mm and wall thickness approximately 
1 mm. The linear thermal expansion coefficient of cop- 
per was measured using a disc-shaped specimen. The 
results obtained for copper indicated that the coeffi- 
cient is almost constant over the temperature range of 
interest and has a value of 17x 10-6~ -1, in good 
agreement with the accepted value. 

The results obtained for the linear coefficients of 
expansion of the elastomer are displayed in Fig. 2. As 
would be expected, the effect of constraint is to in- 
crease the effective expansion. Fig. 3 shows that the 
Young's modulus is almost independent of tempera- 
ture. The Poisson's ratio was determined using Equa- 
tion 10 and the results are presented in Fig. 4. The 
ratio increases markedly with temperature between 25 
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Figure 2 Linear coefficient of thermal expansion for a silicone 
elastomer: (m) unconstrained specimen, (�9 constrained specimen. 
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Figure 3 Young's modulus  for the silicone elastomer. 
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Figure 5 Shear modulus  for the silicone elastomer. 
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Figure 4 Poisson's ratio for the silicone elastomer. 

I provided that the strains are small. Although three 
separate measurements are required, these are usually 
routine and straightforward. 

The method is being applied by the authors to 
a range of materials, some of whose elastic properties 
vary with their thermal history. The results of these 
further experiments will be applied to calculate the 
compression stresses of expansion moulding tools, 
and this work will be reported in the future. 
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and 175 ~ Finally, the shear modulus was obtained 
using Equation 11, and the values obtained are dis- 
played in Fig. 5. For this particular polymer, over the 
temperature range studied, the shear modulus varies 
very little with temperature. 

4. Discussion 
The result presented above illustrate how well the 
method works for determining the shear modulus of 
a polymer. It has been assumed that the elastic proper- 
ties of the material are linear, and this is normally valid 
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